
About this document
This is a prototype of an automatic report that documents how the user specified the operating model and their various justifications.
Introduction
Describe the history and current status of the fishery, including fleets, sectors, vessel types and practices/gear by vessel type, landing ports, economics/markets, whether targeted/bycatch, other stocks caught in the fishery. (from assessment report https://waves-vagues.dfo-mpo.gc.ca/Library/365329.pdf) “Fisheries reference points consistent with DFO’s Precautionary Reference Points are presented for this assessment. There is a 63% probability that stock biomass in 2014 is below the Limit Reference Point (LRP) of 0.4BMSY and a 99% probability that it is below the Upper Stock Reference (USR) of 0.8BMSY.” (from https://wildlife-species.canada.ca/species-risk-registry/virtual_sara/files/cosewic/sr_yelloweye_rockfish_0809_e.pdf) “Yelloweye Rockfish are caught primarily by demersal hook and line gear in Aboriginal, recreational and commercial fisheries coastwide (Yamanaka and Lacko 2001). Common gear types used are rod and reel rigged with single or multiple hooks operated manually by the fisher (“handline”) or longline systems with multiple hooks that are operated hydraulically. Rod and reel gear is jigged just off the bottom and longline gear is set directly on the bottom. The largest commercial landings of Yelloweye Rockfish are taken in the directed commercial halibut and rockfish fisheries. Incidental catch occurs in other directed commercial fisheries, such as those for dogfish, lingcod and salmon and to a lesser extent in groundfish and shrimp trawl fisheries and prawn and sablefish trap fisheries. Trawl gear types, because of their use either off the substrate (mid-water) or over smooth substrates (bottom trawl) do not typically intercept Yelloweye Rockfish."
Describe the stock’s ecosystem functions, dependencies, and habitat types. (from website: http://www.dfo-mpo.gc.ca/species-especes/profiles-profils/yelloweye-rockfish-sebaste-yeuxjaunes-eng.html) "Yelloweye are found only in the northeast Pacific and have been observed from Ensenada, Baja California to Umnak Island in the Aleutian Islands. They are present throughout the coastal waters of British Columbia.
Fisheries harvest 95% of their Yelloweye catch between 19 and 251 m depth. Yelloweye Rockfish have been observed from submersibles in depths from 30 to 232 m, over substrates that are hard, complex and with some vertical relief, such as broken rock, rock reefs, ridges, overhangs, crevices, caves, cobble and boulder fields."
- Provide all relevant reference materials, such as assessments, research, and other analysis. Website: http://www.dfo-mpo.gc.ca/species-especes/profiles-profils/yelloweye-rockfish-sebaste-yeuxjaunes-eng.html Report: https://waves-vagues.dfo-mpo.gc.ca/Library/346394.pdf Report: https://wildlife-species.canada.ca/species-risk-registry/virtual_sara/files/cosewic/sr_yelloweye_rockfish_0809_e.pdf Report: https://waves-vagues.dfo-mpo.gc.ca/Library/365329.pdf
Fishery Characteristics
Longevity
Answered
|
Very short-lived (5 < maximum age < 7)
|
Short-lived (7 < maximum age < 10)
|
Moderate life span (10 < maximum age < 20)
|
Moderately long-lived (20 < maximum age < 40)
|
Long-lived (40 < maximum age < 80)
|
Very long-lived (80 < maximum age < 160)
|

Stock depletion
Answered
|
Crashed (D < 0.05)
|
Very depleted (0.05 < D < 0.1)
|
Depleted (0.1 < D < 0.15)
|
Moderately depleted (0.15 < D < 0.3)
|
Healthy (0.3 < D < 0.5)
|
Underexploited (0.5 < D)
|
Justification
|
(from assesment report: https://waves-vagues.dfo-mpo.gc.ca/Library/365329.pdf) “The biomass in 2014 (B2014) is estimated at 3,821 t (90% credibility interval of 2,428 – 7,138 t), which is 18% (90% credibility interval 10 – 33 %) of the estimated initial biomass (B1918) of 21,955 t (90% credibility interval 13,747 – 37,694 t) in 1918.”
|

Resilence
Answered
|
Not resilient (steepness < 0.3)
|
Low resilience (0.3 < steepness < 0.5)
|
Moderate resilence (0.5 < steepness < 0.7)
|
Resilient (0.7 < steepness < 0.9)
|
Very Resilient (0.9 < steepness)
|
Justification
|
No information provided about steepness for the yelloweye rockfish stock.
|

Historical effort pattern
Answered
|
Stable
|
Two-phase
|
Boom-bust
|
Gradual increases
|
Stable, recent increases
|
Stable, recent declines
|
Justification
|
No graphs provided for yelloweye rockfish to evaluate the historical effort pattern.
|

Inter-annual variability in historical effort
Answered
|
Not variable (less than 20% inter-annual change (IAC))
|
Variable (maximum IAC between 20% to 50%)
|
Highly variable (maximum IAC between 50% and 100%)
|
Justification
|
No justification was provided
|

Historical fishing efficiency changes
Answered
|
Declining by 2-3% pa (halves every 25-35 years)
|
Declining by 1-2% pa (halves every 35-70 years)
|
Stable -1% to 1% pa (may halve/double every 70 years)
|
Increasing by 1-2% pa (doubles every 35-70 years)
|
Increasing by 2-3% pa (doubles every 25-35 years)
|

Future fishing efficiency changes
Answered
|
Declining by 2-3% pa (halves every 25-35 years)
|
Declining by 1-2% pa (halves every 35-70 years)
|
Stable -1% to 1% pa (may halve/double every 70 years)
|
Increasing by 1-2% pa (doubles every 35-70 years)
|
Increasing by 2-3% pa (doubles every 25-35 years)
|
Justification
|
No justification was provided
|

Length at maturity
Answered
|
Very small (0.4 < LM < 0.5)
|
Small (0.5 < LM < 0.6)
|
Moderate (0.6 < LM < 0.7)
|
Moderate to large (0.7 < LM < 0.8)
|
Large (0.8 < LM < 0.9)
|

Selectivity of small fish
Answered
|
Very small (0.1 < S < 0.2)
|
Small (0.2 < S < 0.4)
|
Half asymptotic length (0.4 < S < 0.6)
|
Large (0.6 < S < 0.8)
|
Very large (0.8 < S < 0.9)
|
Justification
|
No information about the selectivity of small fish.
|

Selectivity of large fish
Answered
|
Asymptotic selectivity (SL = 1)
|
Declining selectivity with length (0.75 < SL < 1)
|
Dome-shaped selectivity (0.25 < SL < 0.75)
|
Strong dome-shaped selectivity (SL < 0.25)
|
Justification
|
No information was provided about the selectivity of the fishery to larger fish.
|

Discard rate
Answered
|
Low (DR < 1%)
|
Low - moderate (1% < DR < 10%)
|
Moderate (10% < DR < 30%)
|
Moderate - high (30% < DR < 50%)
|
High (50% < DR < 70%)
|

Post-release mortality rate
Answered
|
Low (PRM < 5%)
|
Low - moderate (5% < PRM < 25%)
|
Moderate (25% < PRM < 50%)
|
Moderate - high (50% < PRM < 75%)
|
High (75% < PRM < 95%)
|
Almost all die (95% < PRM < 100%)
|
Justification
|
(from assessment report: https://www.sararegistry.gc.ca/virtual_sara/files/cosewic/sr_yelloweye_rockfish_0809_e.pdf) “Rockfish populations are characterized by highly variable recruitment. Prolonged periods of poor recruitment result in natural population declines. Recruitment failure has occurred, for Yelloweye Rockfish, in Oregon and California in ten years following 1987 (Wallace 2001). Unfavourable oceanic conditions are a likely cause for recruitment failure but specific environmental factors that lead to Yelloweye Rockfish recruitment failures in B.C. are unknown. In California, links have been made to oceanographic conditions such as upwelling and strong onshore drift (Yoklavich et al. 1996).” But the variation in recruitment could also be unknown for this stock as indicated by the following report: "http://publications.gc.ca/collections/collection_2013/mpo-dfo/Fs70-5-2011-129-eng.pdf
|

Recruitment variability
Answered
|
Very low (less than 20% inter-annual changes (IAC))
|
Low (max IAC of between 20% and 60%)
|
Moderate (max IAC of between 60% and 120%)
|
High (max IAC of between 120% and 180%)
|
Very high (max IAC greater than 180%)
|
Justification
|
(from assessment report: https://www.sararegistry.gc.ca/virtual_sara/files/cosewic/sr_yelloweye_rockfish_0809_e.pdf) “Rockfish populations are characterized by highly variable recruitment. Prolonged periods of poor recruitment result in natural population declines. Recruitment failure has occurred, for Yelloweye Rockfish, in Oregon and California in ten years following 1987 (Wallace 2001). Unfavourable oceanic conditions are a likely cause for recruitment failure but specific environmental factors that lead to Yelloweye Rockfish recruitment failures in B.C. are unknown. In California, links have been made to oceanographic conditions such as upwelling and strong onshore drift (Yoklavich et al. 1996).” But the variation in recruitment could also be unknown for this stock as indicated by the following report: "http://publications.gc.ca/collections/collection_2013/mpo-dfo/Fs70-5-2011-129-eng.pdf
|

Size of an existing MPA
Answered
|
None
|
Small (A < 5%)
|
Small-moderate (5% < A < 10%)
|
Moderate (10% < A < 20%)
|
Large (20% < A < 30%)
|
Very large (30% < A < 40%)
|
Huge (40% < A < 50%)
|

Spatial mixing (movement) in/out of existing MPA
Answered
|
Very low (P < 1%)
|
Low (1% < P < 5%)
|
Moderate (5% < P < 10%)
|
High (10% < P < 20%)
|
Fully mixed
|

Size of a future potential MPA
Answered
|
None
|
Small (A < 5%)
|
Small-moderate (5% < A < 10%)
|
Moderate (10% < A < 20%)
|
Large (20% < A < 30%)
|
Very large (30% < A < 40%)
|
Huge (40% < A < 50%)
|
Justification
|
This information was not provided in the assessment reports.
|

Spatial mixing (movement) in/out of future potential MPA
Answered
|
Very low (P < 1%)
|
Low (1% < P < 5%)
|
Moderate (5% < P < 10%)
|
High (10% < P < 20%)
|
Fully mixed
|
Justification
|
No justification was provided
|

Initial stock depletion
Answered
|
Very low (0.1 < D1 < 0.15)
|
Low (0.15 < D1 < 0.3)
|
Moderate (0.3 < D < 0.5)
|
High (0.5 < D1)
|
Asymptotic unfished levels (D1 = 1)
|

Management Characteristics
Types of fishery management that are possible
Answered
|
TAC (Total Allowable Catch): a catch limit
|
TAE (Total Allowable Effort): an effort limit
|
|