About this document

This is a prototype of an automatic report that documents how the user specified the operating model and their various justifications.


Introduction

  1. Describe the history and current status of the fishery, including fleets, sectors, vessel types and practices/gear by vessel type, landing ports, economics/markets, whether targeted/bycatch, other stocks caught in the fishery.

Coming soon!

  1. Describe the stock’s ecosystem functions, dependencies, and habitat types.

Coming soon!

  1. Provide all relevant reference materials, such as assessments, research, and other analysis.

The primary source for specifying this FRAME questionnaire is the 2016 Stock Synthesis assessment conducted by Dr Adam Langley. ://drive.google.com/open?id=1XbRRpJkMcISUY3yCcr_LRVyBShMjj8zwdates for the assessment run from 1950-2015, a total of 66 years.


Fishery Characteristics

Longevity

Answered
Very short-lived (5 < maximum age < 7)
Short-lived (7 < maximum age < 10)
Moderate life span (10 < maximum age < 20)
Moderately long-lived (20 < maximum age < 40)
Long-lived (40 < maximum age < 80)
Very long-lived (80 < maximum age < 160)
Justification
Mature natural mortality rate is high between 0.4 and 0.8. The current assessment vector for age 2-6+ is 0.552, 0.756, 0.756, 0.596, 0.551. E.g.://drive.google.com/open?id=1ova2OECyfb6DPlg5rPXOspRK7be7_29g

Stock depletion

Answered
Crashed (D < 0.05)
Very depleted (0.05 < D < 0.1)
Depleted (0.1 < D < 0.15)
Moderately depleted (0.15 < D < 0.3)
Healthy (0.3 < D < 0.5)
Underexploited (0.5 < D)
Justification
The assessment report provides estimates of spawning biomass in 2015 that is around 28.9% of that in 1950. This is at the top of the “Moderately depleted” bound so the ‘Healthy’ depletion level is selected to bracket additional uncertainty. https://drive.google.com/open?id=1cNO0Kw0bN5VX6bcGYw43N5ktgG0vCp6r

Resilence

Answered
Not resilient (steepness < 0.3)
Low resilience (0.3 < steepness < 0.5)
Moderate resilence (0.5 < steepness < 0.7)
Resilient (0.7 < steepness < 0.9)
Very Resilient (0.9 < steepness)
Justification
The assessment assumes a steepness value of 0.8 (Table 4, page 16)

Historical effort pattern

Answered
Stable
Two-phase
Boom-bust
Gradual increases
Stable, recent increases
Stable, recent declines
Justification
The assessment predicts that exploitation rate is thought to be increasing exponentially since the 1980s (https://drive.google.com/open?id=1XiW2LCO4EPr-UfaBfK3tbF6arIYznHuu)

Inter-annual variability in historical effort

Answered
Not variable (less than 20% inter-annual change (IAC))
Variable (maximum IAC between 20% to 50%)
Highly variable (maximum IAC between 50% and 100%)
Justification
The annual fishing mortality rates of the assessment vary by around 10-15%.://drive.google.com/open?id=1XiW2LCO4EPr-UfaBfK3tbF6arIYznHuu

Historical fishing efficiency changes

Answered
Declining by 2-3% pa (halves every 25-35 years)
Declining by 1-2% pa (halves every 35-70 years)
Stable -1% to 1% pa (may halve/double every 70 years)
Increasing by 1-2% pa (doubles every 35-70 years)
Increasing by 2-3% pa (doubles every 25-35 years)
Justification
Hard to quantify but efficiency is likely to be improving since yellowfin are actively targeted. Would need to see the slope of log(F/E) to evaluate this.

Future fishing efficiency changes

Answered
Declining by 2-3% pa (halves every 25-35 years)
Declining by 1-2% pa (halves every 35-70 years)
Stable -1% to 1% pa (may halve/double every 70 years)
Increasing by 1-2% pa (doubles every 35-70 years)
Increasing by 2-3% pa (doubles every 25-35 years)
Justification
Future projections are assumed to be using current technology.

Length at maturity

Answered
Very small (0.4 < LM < 0.5)
Small (0.5 < LM < 0.6)
Moderate (0.6 < LM < 0.7)
Moderate to large (0.7 < LM < 0.8)
Large (0.8 < LM < 0.9)
Justification
Fish grow to between 121 and 180 cm and are thought to mature around 100cm.

Selectivity of small fish

Answered
Very small (0.1 < S < 0.2)
Small (0.2 < S < 0.4)
Half asymptotic length (0.4 < S < 0.6)
Large (0.6 < S < 0.8)
Very large (0.8 < S < 0.9)
Justification
Fish as small as 20cm are reported in the catch.

Selectivity of large fish

Answered
Asymptotic selectivity (SL = 1)
Declining selectivity with length (0.75 < SL < 1)
Dome-shaped selectivity (0.25 < SL < 0.75)
Strong dome-shaped selectivity (SL < 0.25)
Justification
The assessment estimates 90% selectivity of large individuals.

Discard rate

Answered
Low (DR < 1%)
Low - moderate (1% < DR < 10%)
Moderate (10% < DR < 30%)
Moderate - high (30% < DR < 50%)
High (50% < DR < 70%)
Justification
Discarding is assumed to be negligible.

Post-release mortality rate

Answered
Low (PRM < 5%)
Low - moderate (5% < PRM < 25%)
Moderate (25% < PRM < 50%)
Moderate - high (50% < PRM < 75%)
High (75% < PRM < 95%)
Almost all die (95% < PRM < 100%)
Justification
Not meaningful since discard rate is negligible. Post release mortality likely to be moderate to high given predominance of longline and purse seine gears.

Recruitment variability

Answered
Very low (less than 20% inter-annual changes (IAC))
Low (max IAC of between 20% and 60%)
Moderate (max IAC of between 60% and 120%)
High (max IAC of between 120% and 180%)
Very high (max IAC greater than 180%)
Justification
The stock assessment assumes a log prior standard deviation of 0.6 (the bin definition separating Moderate and High recruitment variability here). .

Size of an existing MPA

Answered
None
Small (A < 5%)
Small-moderate (5% < A < 10%)
Moderate (10% < A < 20%)
Large (20% < A < 30%)
Very large (30% < A < 40%)
Huge (40% < A < 50%)
Justification
No spatial closures.

Spatial mixing (movement) in/out of existing MPA

Answered
Very low (P < 1%)
Low (1% < P < 5%)
Moderate (5% < P < 10%)
High (10% < P < 20%)
Fully mixed
Justification
Ignorable given the previous answer of zero spatial closures. In any case, high mixing of these migratory fish.

Size of a future potential MPA

Answered
None
Small (A < 5%)
Small-moderate (5% < A < 10%)
Moderate (10% < A < 20%)
Large (20% < A < 30%)
Very large (30% < A < 40%)
Huge (40% < A < 50%)
Justification
Here we investigate a possible future closure of 10-20%.

Spatial mixing (movement) in/out of future potential MPA

Answered
Very low (P < 1%)
Low (1% < P < 5%)
Moderate (5% < P < 10%)
High (10% < P < 20%)
Fully mixed
Justification
High to very high mixing is assumed among the closure and the open areas.

Initial stock depletion

Answered
Very low (0.1 < D1 < 0.15)
Low (0.15 < D1 < 0.3)
Moderate (0.3 < D < 0.5)
High (0.5 < D1)
Asymptotic unfished levels (D1 = 1)
Justification
The assessment assumed unfished initial conditions.


Management Characteristics

Types of fishery management that are possible

Answered
TAC (Total Allowable Catch): a catch limit
TAE (Total Allowable Effort): an effort limit
Size limit
Time-area closures (a marine reserve)
Justification
1. Describe what, if any, current management measures are used to constrain catch/effort.

2. Describe historical management measures, if any.

3. Describe main strengths and weaknesses of current monitoring and enforcement capacity.

4. Describe and reference any legal/policy requirements for management, monitoring and enforcement.


TAC offset: consistent overages/underages

Answered
Large underages (40% - 70% of recommended)
Underages (70% - 90% of recommended)
Slight underages (90% - 100% of recommended)
Taken exactly (95% - 105% of recommended)
Slight overages (100% - 110% of recommended)
Overages (110% - 150% of recommended)
Large overages (150% - 200% of recommended)
Justification
Very large overages are possible.


TAC implementation variability

Answered
Constant (V < 1%)
Not variable (1% < V < 5%)
Low variability (5% < V < 10%)
Variable (10% < V < 20%)
Highly variable (20% < V < 40%)
Justification
These overages may be highly inconsistent.